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A Wavelet Approach for the Identification of Axonal
Synaptic Varicosities from Microscope Images

Yu-Ping Wang, Senior Member, IEEE, Husain Ragib, and Chi-Ming Huang

Abstract—Direct visualization of synapses is a prerequisite to
the analysis of the spatial distribution patterns of synaptic sys-
tems. Such an analysis is essential to the understanding of synap-
tic circuitry. In order to facilitate the visualization of individual
synapses at the subcellular level from microscope images, we have
introduced a wavelet-based approach for the semiautomated recog-
nition of axonal synaptic varicosities. The proposed approach to
image analysis employs a family of redundant wavelet represen-
tations. They are specifically designed for the recognition of sig-
nal peaks, which correspond to the presence of axonal synaptic
varicosities. In this paper, the two-dimensional image of an axon
together with its synaptic varicosities is first transformed into a
one-dimensional (1-D) profile in which the axonal varicosities are
represented by peaks in the signal. Next, by decomposing the 1-D
profile in the differential wavelet domain, we employ the multi-
scale point-wise product to distinguish between peaks and noises.
The ability to separate the true signals (due to synaptic varicosi-
ties) from noise makes possible a reliable and accurate recognition
of axonal synaptic varicosities. The proposed algorithms are also
designed with a variable threshold that effectively allows variable
sensitivities in varicosity detection. The algorithm has been sys-
tematically validated using images containing varicosities (≤30)
that have been consistently identified by seven human observers.
The proposed algorithm can give high sensitivity and specificity
with appropriate threshold. The results have indicated that the
semiautomatic approach is satisfactory for processing a variety of
microscopic images of axons under different conditions.

Index Terms—Axonal synapse, granule cell, microscopy, multi-
scale analysis, neuron image analysis, parallel fiber, peak detection,
wavelets.

I. INTRODUCTION

R ECENT advances in light microscopy and computer-aided
automation have brought about significant improvements

in both the quality and quantity of data in image analysis. Im-
provements in optics such as the use of confocal microscopy
have pushed the emphasis of image analysis from the level of
cellular architecture to subcellular structural elements. One such
structural element is the synapse, the specialized contact zone
where one neuron communicates with another. The visualiza-
tion of synapses, in principle, is the first step leading to the
eventual analysis of neuronal circuitry.
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Fig. 1. Microscope image of a parallel fiber taken with oil-immersion objective
(×100). The varicosities are indicated by arrows.

At present, the visualization and analysis of synaptic circuity
requires serial sections and three-dimensional (3-D) reconstruc-
tion from electron microscopy; both are highly labor-intensive
endeavors [1]. For example, Shepherd and Harris [1] analyzed
75 axonal segments in the hippocampus for a total of 224 synap-
tic varicosities over a total length of 674 µm. More recently,
they examined synaptic varicosities of 39 granule cell axons
reconstructed from 171 electromagnetic (EM) thin sections [3].
In these state-of-the-art studies, no more than a few hundred
synapses were identified manually. It would be difficult to in-
troduce a significantly large sample size. If a reliable computer-
assisted varicosity identification can be devised, this limit can
be further extended, making large-scale analysis of synaptic
network feasible.

A near one-to-one correlation, however, has been shown be-
tween axonal synapses and their synaptic varicosities, which
are visible in light microscopy [2]–[4]. Many investigators
have, therefore, drawn inferences at the synaptic level based on
light microscope observations of the axonal synaptic varicosi-
ties [4]–[6]. However, the large-scale identification and analysis
of axonal synaptic varicosities from light microscope observa-
tions are still a formidable task. First, typical axonal synaptic
varicosities are quite small, some literally at the edge of the
optical resolution [4], [6]. Whenever visible, these axonal vari-
cosities are often associated with barely discernable varicosital
swellings along the axon fiber (see Fig. 1, for example). The
development of an automated, objective, and fast algorithm for
the reliable recognition of axonal varicosities from light micro-
scope images of axons is, therefore, a worthy task. Furthermore,
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synaptic circuitry of the nervous system is often complex and
region-specific. Analysis of the synaptic circuitry must initially
be limited to a well-chosen region of the brain. Here, we have
chosen the cerebellum for which a great deal of synaptic in-
formation is available, and in which promising results are most
likely to emerge. More specifically, we have focused on the
cerebellar parallel fiber system.

The cerebellar parallel fiber system contains the synapses be-
tween the granule cells and the Purkinje cells (gcPc synapses),
which have a strategic role in cerebellar function [7], [8]. These
synapses link the principal cerebellar cells receiving afferent
information, the granule cells, with the principal efferent cells,
the Purkinje cells. The selection and timing of the Purkinje cell
activation are determined by the density, number, and spacing
of these gcPc synapses along the parallel fiber. At the function
level, a parallel fiber together with its gcPc synapses can, there-
fore, be viewed as a message. This message contains the neces-
sary information for the activation of the target Purkinje cells.
Hence, the spatial distribution pattern of gcPc synapses along the
parallel fibers is of functional significance. All gcPc synapses
exhibit long-term depression, widely thought as a physiological
substrate of neuroplasticity or learning [9]. A number of other
axonal systems, including those in the hippocampus, the cortico-
striatal fibers, and the cortico-cortical fibers, may function in a
similar manner [6].

The present study concerns the analysis of gcPc synaptic vari-
cosities from microscope images of axons (parallel fibers) in an
effort to probe the synaptic circuitry of the cerebellar cortex.
First, we introduce an algorithm to trace the parallel fibers. There
are many image-processing approaches available for tracing the
neurites. For example, an automated segmentation algorithm
was proposed in [10] that was based on the probability estima-
tion. Guduru et al. [11] introduced a modified algorithm of [12],
which used a directional derivative filter and seed points. Weaver
et al. also proposed a heuristic ridge-detection algorithm [13].
In this paper, we used a semiautomatic approach of [14], which
offers flexibility in processing complex axons under various
imaging conditions. The accurate tracing of axon images facil-
itates the subsequent identification of varicosities, which is the
focus of the paper. Second, we introduce a wavelet-based ap-
proach for the recognition of axonal synaptic varicosities along
cerebellar parallel fibers. In particular, we employ a special fam-
ily of differential wavelets designed by one of us [15]. These
wavelets are particularly suited to process signals with spiking
peaks or discontinuities. This property is ideal for identification
of varicosities in microscopy images in that varicosities can be
represented as spikes or discontinuities in the data profile of
a parallel fiber. We have used these wavelets successfully to
enhance the chromosome-banding patterns [16]. Furthermore,
these wavelets offer computational advantages [17]. We believe
that the development of the automated image analysis tech-
nique may hold the key to future efforts in large-scale analysis
of synaptic circuitry by directly characterizing the spatial dis-
tribution pattern of synapses of an entire synaptic system.

The rest of the paper will be organized as follows. Section II
will briefly review the family of differential wavelets. Section III
will describe our detection algorithm, which is largely based

on the cross-scale correlation properties of varicosities in the
wavelet domain. A multiscale point-wise product (MPP) is used
to detect significant correlation coefficients relevant to varicosi-
ties. Section IV presents the validation of our approach in ana-
lyzing real imaging data from microscopy. The paper concludes
with discussion on the implication of recognition of synaptic
varicosities on the function of the cerebellum in neuroscience
studies.

II. REVIEW OF DIFFERENTIAL WAVELET REPRESENTATION

A. Redundant Differential Wavelet Representations

Redundant wavelet representations with translation invari-
ance properties are well suited for the detection of signal singu-
larities [17]. In particular, the differential wavelets are a special
family of representations ideal for localizing spike patterns in
a signal. They are the generalizations of wavelet frames used
in [18]. These wavelets are taken as the first-and second-order
derivatives of spline functions [15]

ψn(x) =
d

dx
βn+1(x) or ψn(x) =

d2

dx2
βn+2(x) (1)

where βn(x) is the B-spline of order n.
The wavelets in (1) approximate the Canny edge detection

operator and Laplacian of Gaussian (LoG) filters [17]. Canny
and LoG operators have been shown to be optimal for edge
detection in a noisy environment. Nevertheless, the advantage
of these wavelets is in their ability to provide computational
simplicity. If we define the smoothing and wavelet transforms
of a signal f at the dyadic scales as S2j f and W2j f , we can
compute the smoothing operation and wavelet transforms using
a fast iterative algorithm{

S2j f = S2j−1f ∗ h↑2j−1

W2j f = S2j−1f ∗ g↑2j−1 , j = 1, 2, . . . , J
(2)

where {h} and {g} are the low-pass and high-pass filters, re-
spectively, and ↑2j is the up-sampling operation. Through the
transform of (2), the signal is decomposed into multiple scales
from 1, 2, . . . , J . Conversely, the signal can be recovered from
its wavelet decompositions

S2j−1f = S2j f ∗ h̃↑2j−1 + W2j f ∗ g̃↑2j−1 (3)

where {h̃} and {g̃} are the reconstruction filters. This iterative
algorithm is called a pyramid-like algorithm [15], which is sim-
ilar to the conventional pyramid algorithm [19] except that no
downsampling is performed.

The above transform is translation-invariant [15]. This prop-
erty is ideal for the recognition of peak patterns in multiscale
domain. When the signal is decomposed in the multiscale do-
main, the peak patterns still maintain strong correlations across
different resolutions while noncorrelated noise components are
mostly left out at higher resolutions. The other advantage is that
the filters {h} and {g} in the wavelet decomposition (2) are
binomials and difference operations. Therefore, only additions
are needed when they are implemented. Filters of any order can
be found in [15]. The following is a list of several filters of lower
orders that are used in our experiments.
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TABLE I
FIR FILTERS FOR DECOMPOSITION AND RECONSTRUCTION BASED ON THE

0TH-ORDER SPLINES. h AND g ARE THE LOW-PASS AND HIGH-PASS FILTERS

USED IN DECOMPOSITION WHILE h̃ AND g̃ ARE THE RECONSTRUCTION FILTERS

TABLE II
FIR FILTERS FOR DECOMPOSITION AND RECONSTRUCTION BASED ON

THE CUBIC SPLINES. h AND g ARE THE LOW-PASS AND HIGH-PASS FILTERS

USED IN THE WAVELET DECOMPOSITION WHILE h̃ AND g̃ ARE THE

RECONSTRUCTION FILTERS

1) The Haar-Like Wavelets: In the extreme case, in which the
order of the spline is taken as 0, we obtain the Harr-like
wavelets. Table I lists the finite impulse responses (FIRs)
of the decomposition and reconstruction filters. These
filters (except the normalization constant) are identical
to the conventional Haar filters for orthogonal wavelet
transforms; the difference between them is that no down-
sampling is performed in the decomposition formula (2).

2) The Cubic Differential Wavelets: Table II lists the FIRs of
cubic differential spline wavelets, which are derived when
the order of splines are taken as 1 and 3. These filters have
been used in the paper. Different orders of spline filters
will result in different denoising effects.

B. Wavelet Approach for Peak Detection

In the next section, we will trace the two-dimensional
(2-D) image of a parallel fiber and then project it into a one-
dimensional (1-D) signal profile. The synaptic varicosities will
correspond to the peak patterns in the 1-D profile. Because of the
presence of noise, peak detection is error-prone. This problem
can be avoided by detecting the peaks in a multiscale approach.
Because the varicosity patterns across several scale resolutions
have strong correlations but noises do not, we can enhance the
authentic signal while suppressing noises and eliminating in-
correct patterns of small size. We have utilized this property for
enhancing chromosome-banding patterns [16]. In the Appendix,
we model the signals using Gaussian mixtures added with ran-
dom noise. By analyzing the signal in the multiscale domain,
it can be seen that true peak patterns exhibit distinct behaviors
from that of the noise. This evidence has also been demonstrated
in [16]. Therefore, by comparing these wavelet coefficients at
multiple resolutions, the varicosities can be identified more ac-
curately.

Fig. 2. Varicosities shown in circles are detected from the parallel fiber with
the proposed algorithm.

III. ALGORITHMS FOR TRACING AND DETECTION

OF SYNAPTIC VARICOSITIES

The task of detection of synaptic varicosities is broken down
into the following steps.

1) Trace the parallel fibers with varicosities from light mi-
croscope images.

2) Generate 1-D profiles of parallel fiber with varicosities
by projecting the image intensities along the parallel fiber
trace.

3) Locate varicosities in the differential wavelet domains
by analyzing the cross-scale correlations of varicosity
patterns.

4) Compute quantitative parameters inferred from the loca-
tions of varicosities.

Each step is discussed later in detail.

A. Semiautomatic Tracing of Parallel Fibers

The first step is to trace the fiber from the microscope image
and record their coordinates with single pixel precision. There
are many automated tracing algorithms available [10]–[13]. Be-
cause of the complexity of the axonal images under different
imaging conditions, we have adopted the semiautomatic tracing
algorithm developed in [14] to make certain that the axons are
traced efficiently and without error. The other reason for this
decision is our consideration that the major focus of the project
is the recognition and identification of axonal varicosities. The
semiautomatic tracing algorithm offers opportunities for human
intervention during the fiber tracing stage.

The code was written in Java and the module was used as a
plug-in of NIH Image J. The detection algorithm is based on the
eigenvectors of the second derivative matrix computed from the
image intensity values. Fig. 2 displays parallel fiber traces using
this algorithm. The parallel fiber traces of single pixel width are
delineated in the light gray line. The path of the parallel fiber
trace is described by a set of coordinates, which will be used in
the next step.

B. Projection of Fibers Into 1-D Profiles

Once the parallel fiber of single pixel (medial axis) width is
obtained, we project the image along this medial axis within
a window. This will convert the fiber into a 1-D profile sig-
nal, where high gray-level densities in the profile correspond
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Fig. 3. Parallel fiber in Fig. 2 is straightened and projected into a 1-D data
profile within a window of five pixels in which the intensities of the images
are inverted in the projection. It can be seen that the peaks in the 1-D profile
correspond to the varicosities.

to the synaptic varicosities (indicated by circles in Fig. 2).
More specifically, this step is accomplished as follows. We first
straighten the parallel fiber trace based on the traced medial
axis. The pixels along the normal direction of the medial axis
are averaged within a preselected window. In order to make the
1-D projected profile continuous, a linear interpolation is per-
formed to smooth the profile. The height of the vertical window
is determined empirically. Fig. 3 shows that the image of the par-
allel fiber in Fig. 2 is straightened and projected into a 1-D data
profile. The image straightening can simplify the computation
and has been widely used [20].

The selection of the window size can affect the 1-D profile of
fibers and is usually empirically determined based on the data.
Selection of an inappropriate window will subsequently result
in inaccurate peak detection. If the window size is too big,
scattered noise spots may be projected. If the window size is too
small, false varicosities might be detected. Fig. 4 shows profile
plots (b)–(d) with different window sizes when converting the
straightened image (a) to the 1-D profile. Fig. 4(b) shows a more
smooth profile than the profiles plotted in (c) and (d) because it
uses a larger window. A modest and properly chosen window
size can lead to a smooth profile even if the raw optical image
may be noisy. We have tested the effect of window size on the
peak detection and the height of the window is usually taken to
be five pixels. Moreover, the user has an option to specify the
window size.

C. Detection of Varicosities in the Wavelet Domain

1) Analysis of Peaks in the Differential Wavelet Domain:
The detection of varicosities or peak patterns of the 1-D pro-
file is facilitated by the wavelet transform. If the varicosities
are detected directly in the 1-D profile, many small peaks due
to noise could be mistakenly located. However, if they are de-
tected in a multiresolution approach, noises will be smoothed
out while true peaks can be located more accurately. In the mul-
tiscale domain, wavelet coefficients corresponding to true peaks
have strong correlations while noises do not. Fig. 5 displays the
wavelet decompositions of the 1-D signal profile in Fig. 3 at
scales 1–4, as defined in (2). Clearly, with an increase in scale,
noises are suppressed while those coefficients corresponding to
peaks are maintained. We have analyzed the behavior of white
and fractal noises in a separate study [21], which showed that
the average number of noise coefficients was reduced to half of
that in the previous scale. We can model the varicosities in the
1-D profile as the superimposition of Gaussian functions. They

Fig. 4. 1-D data profiles (b–d) are obtained from the projection of 2-D parallel
fibers (a) along the medial axis with windows of different sizes, where the height
of the window is taken to be three, four, and five pixels, respectively. Varying
the size of the window results in slightly different profiles. The optimal window
size is determined empirically.

behave differently from noises. A more detailed analysis can be
found in the Appendix.

A few approaches exist to detect the peaks, which usually
correspond to signal edges or singularities. For example, they
can be localized with instantaneous coefficient of variation [22].
In the multiscale domain, an approach that can take an advantage
of the correlation of edges between scales is to utilize the MPPs
[23]. They are often used in computer vision and image analysis
[24], [25]. The MPPs are defined as

MPPK(n) =
K∏

j=1

W2j f(n) (4)

where W2j f is the wavelet decompositions of (2) at scale j.
This measurement can exploit the cross-scale correlation due to
the presence of desired peaks. Fig. 6 shows the values of the
MPPs between two neighboring scales (1–2, 2–3, and 3–4) and
the weighted value. It is evident that the MPPs have large values
in the vicinity of peaks while they take on smaller values at other
locations. We have used MPPs to enhance the banding patterns
in a chromosome image [16]. The determination of the first order
probability distribution function (PDF) was introduced in [23].
Let W2i f and W2j f be the zero-mean joint Gaussian with the
covariance matrix

C =
(

σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
(5)
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Fig. 5. Differential wavelet decompositions of the 1-D profile in Fig. 3 at
scales 1–5. The bottom panel is the approximation of the 1-D profile at the
coarse scale 5, which smoothes out small noise peaks but maintains strong and
salient peaks.

Fig. 6. MPPs between adjacent scales of 1 and 2, 2 and 3, and 3 and 4.
The bottom figure is the weighted MPPs, which are computed as the weighted
combination of MPPs between adjacent scales. The weight of {0.2, 0.3, 0.5}
is used. The MPPs measure the correlation of the signal patterns between the
adjacent scales; they take larger values around the neighborhood of peaks.

where ρ12 is the correlation coefficient. Then, the two-scale
point-wise product MPP2(K) has the PDF

PDF(x) =
1

πσ1σ2

√
1 − ρ2

12

exp(ρ12σ1σ2x)K0(σ1σ2|x|) (6)

where K0 is the modified Bessel function of the second kind and
order zero. The PDF of the MPP is generally non-Gaussian [23].
There is a sharp peak when z = 0, which indicates that major-
ity of the MPP values are zeros. The larger MPP values have

Fig. 7. Detection of varicosities in the 1-D profile by the use of MPPs. The
varicosities correspond to the peaks in the profile. The peaks can be accurately
localized using coarse-to-fine scale space tracing and the use of the weighed
MPPs (solid line). The extra peak detected in the original profile can be deleted
by using the weighted MPPs. The same weights as in Fig. 6 are used.

small probability values, which indicates the rare occurrence of
the peak patterns. This is consistent with our observation from
Fig. 6.

D. Detection of Peak Patterns by Making Statistical Decision

Based on the fact that large values of MPP correspond to the
occurrence of peaks, we can design the corresponding threshold
algorithm to identify the peaks. This can be formulated into a
statistical decision problem. We denote the null hypothesis of
no peak being present by H0, and give an upper limit α on the
probability of erroneously rejecting H0 when, in fact, it is true.
Then, the decision rule is given by the following: if MPP(z) ≥
MPP(α), reject the null hypothesis with a confidence of 1 − α;
otherwise, do not reject it. In this decision rule, MPP(α) is the
value of the horizontal axis for which the area under the right
tail of the PDF is α. The threshold level T is taken as this value,
i.e.,

∞∫
T

PDF(x) dx = α. (7)

The threshold is actually determined by the confidence level
1 − α. It is critical to choose a proper threshold since an im-
proper threshold may render some noise as peaks, or may skip
some varicosities. Equation (7) gives a theoretical guide but is
hard to use. In practice, we simply normalize the MPP value to
be 0–1 and the threshold is specified in terms of the percentage
of the maximum value. Fig. 7 displays the peak determined by
a threshold, which can accurately localize the varicosities. Our
algorithm is designed with an option to let the users specify dif-
ferent threshold parameters so that different levels of sensitivity
can be achieved. This design is useful because real images have
different noise levels and the analysis is best carried out with
the adjustable levels of sensitivity.

E. Correction of Peak Locations in the Multiscale Domain

The peaks are detected at coarse scale by the analysis of
MPP, which reduces the influence of noise. However, due to the
inherent uncertainty in time frequency analysis, the locations
of these peaks are shifted by smoothing. Therefore, we have to
relocate these peaks at the finer scales. The locations of these
peaks can be corrected by tracking the detected peaks from a
coarser scale to a finer scale. Because of the scaling theorem in
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computer vision [17], if there are peaks in the coarse scales, we
can always find them in the finer scales. If peaks at coarse scale
can be traced at the finer scale within a window, the location of
the peak was replaced with that in the coarser scale. The size
of the window used for scale-space tracing is also critical. Too
small a window could generate false peaks while too large a
window could cause true peaks to be missed. The window of
size 5 worked well in the experiment. The computation of MPP
can be further refined by adjusting the weights of MPP at each
scale. Instead of using the MPP at a single scale, we take the
weighed average of MPP at several scales. A systematic way of
finding optimal MPPs needs further research

MPP(n) =
∑

k

ωkMPP. (8)

At finer scales, there is a high cross correlation while at
coarser scales, there is a less cross correlation due to smoothing.
Therefore, the weights were chosen such that the MPP at finer
scale is given higher weight, and vice versa. This will emphasize
the importance of the MPP at finer scales. Fig. 7 demonstrates
the improvement brought by this approach.

IV. VALIDATION EXPERIMENT

A. Mouse Cerebellum Data Collection

Eight mice (C57BL/6, three months old) were deeply anes-
thetized and perfused intracardially with 4% formalin and 1%
glutaraldehyde. The protocol was executed according to the
NIH guidelines, and with the approval of the University of
Missouri-Kansas City Institutional Animal Care and Use Com-
mittee. The cerebella remained in the partially opened skull
and postfixed for 24–48 h before being removed. Each cere-
bellum was placed in 3% K2Cr2O7 and 1% OsO4 in DH2O
for one day, then washed and impregnated with 1% AgNO3

for one to two days following the rapid Golgi procedure [2].
Coronal sections 75 µm thick were cut for the cerebellum. In
optimally stained sections, the Golgi method revealed only a
small fraction of randomly selected granule cells, along with
their parallel fibers, darkly stained against a pale background.
Parallel fiber synaptic varicosities were identified by one of the
two protocols. First, we asked experienced human observers to
identify varicosities according to guidelines of Palay and Chan-
Palay [2] and Pitchipornchai et al. [4]. Second, we employed
the wavelet-based algorithm for varicosity identification as de-
scribed in Sections III-A to III-C.

Digital images of parallel fibers were taken using a Zeiss
Axiophot light microscope with mountable DCP-11 digital cam-
era. The pictures were taken with 100× oil-immersion objective
and stored on the compact flash card that could be transferred
to the computer using a compatible converter. A total of 150
varicosities along 22 parallel fiber segments were examined.

B. Validation Experiment

We compared the results from manually identified varicosi-
ties by experienced human observers with the wavelet approach.
Seven human observers were trained to identify axonal varicosi-
ties according to a set of criteria (e.g., the width of the varicosity

must be at least 1.5 to 2 times larger than the width of the axon,
etc.) [2], [4]. All seven human observers were able to come to
perfect agreement on axonal varicosity identification as long as
the number of varicosities is relatively small (e.g., ≤30). When
human observers were assigned to analyze a large number of
varicosities (e.g., 3000 per human observer), the standard error
of the mean from results of the same observer was between
2.7% and 7.5% in six of the seven human observers while that
of one observer was 13.8%. The less-than-perfect agreement
among human observers when processing large number of vari-
cosities was a testament of the high level of attention required
for varicosity identification and the effect of the fatigue.

In testing our algorithm, we used the images containing vari-
cosities that the human observers were able to identify with
consistency. There are several criteria that can be used to quan-
titatively evaluate the performance of the algorithm. We use
the sensitivity metric, a typical criterion that is often used for
evaluating the detection performance. Sensitivity by definition
is the probability of yielding positive results when a given con-
dition is true. The data set is divided into “true varicosities” and
“false varicosities,” which denote the presence or absence of the
varicosities, respectively. More specifically, a true varicosity is
a valid known peak identified by the technician while a false
varicosity is not. Tests are then carried out with the wavelet
algorithm. The detection results are categorized into positive
observations and negative observations. Positive observation is
the case that the algorithm correctly identified as the true vari-
cosities while negative observation is the case that the algorithm
failed to identify.

Let us consider that there are Ntotal number of varicosities,
out of which Ntp is the number of true positive observations
with varicosities being present. Now let Notp (true positive)
be the number of positive observations from Ntp positive true
observation cases. The sensitivity or true positive fraction (TPF)
is defined as the ratio of the number of positive observations to
the number of positive true-condition cases [26]

TPF =
Notp

Ntp
. (9)

We have tested the sensitivity of the algorithm for varicosity
recognition. Fig. 8 plots the average sensitivity as a function of
different threshold levels, where 10 image data sets have been
used. As expected, the sensitivity depends on the threshold. As
the threshold value increases, the sensitivity decreases. In the
developed software, we give the user an option to select the
threshold level so that high sensitivity can be achieved in terms
of the degree of the image quality. We have also tested the
algorithm under various window sizes. It turns out that the algo-
rithms are quite robust and their performances are not critically
dependant on the choice of these parameters.

We also test the sensitivity or true negative fraction (TNF),
which is defined as the ratio of the number of negative obser-
vations (Notn) to the number of negative true-condition cases
(Ntn)

TNF =
Notn

Ntn
. (10)
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Fig. 8. Plot of the average sensitivity versus the threshold level. The sensitivity
decreases with the threshold level. The sensitivity of the test is the probability
of its yielding positive results when a given condition is true. A window of five
pixels is used in image straightening.

Fig. 9. Comparison of specificity for 10 images between the wavelet-based
approach with the simple peak detection within a three-pixel window approach,
where the threshold level is taken to be 10.

Fig. 9 shows the specificity of the algorithm when testing on
10 images and the comparison with a conventional algorithm.
It demonstrates that the proposed multiscale approach outper-
forms the conventional thresholding approach, which detects
varicosity peak patterns by thresholding within a small win-
dow. In addition, the simple thresholding, prone to noise, could
falsely identify artifacts as peaks, leading to higher false positive
ratios or lower specificity.

We have also used the mean square error (MSE), which is
the squared root of the difference between the number of the
varicosities detected by the proposed algorithm and the observed
ones. MSE decreases with the threshold level (Fig. 10). Thus,
at lower threshold levels, we can achieve high sensitivity but
some of the nonvaricosities could be falsely detected. For the

Fig. 10. Plot of MSE, which is defined as the squared root of the difference
between the number of the true varicosities and the observed ones.

Fig. 11. Test of the effects of different window sizes on the sensitivity when
projecting the 2-D image into a 1-D profile (shown in Fig. 3). Within the window
size of one to five pixels, the sensitivity of the algorithm remains unchanged.

images that we have tested, our results suggest that a moderate
30% threshold level is the best.

We have also tested the effect of the window size, a param-
eter used for projecting a parallel fiber to a 1-D profile. The
effectiveness of our algorithm is insensitive to window size if
the window size is within one to five pixels. As an example,
Fig. 11 compares the effects of the window size. It can be seen
that the sensitivity of the algorithm remains unchanged within
the window size of one to five pixels.

V. DISCUSSION AND CONCLUSION

This paper introduces an automated varicosity-recognition
approach using a novel wavelet-based algorithm. We have
shown that the identification of synaptic varicosities can be
facilitated with wavelet analysis with the proposed differential
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wavelets [15]. The facilitation is in the form of automated and
reliable detection of peak patterns in the presence of noise. This
is because, although it is difficult to separate small varicosities
from noise in the spatial domain, they exhibit distinctively dif-
ferent cross-scale correlation when they are transformed into
the wavelet domain. The differential wavelets are specially suit-
able for localizing the spatial correlations because they are
translation-invariant representations. In fact, these wavelets per-
form differential operations by which geometrically important
structures, such as varicosities, can be inferred. Furthermore,
computational efficiency can be obtained with this family of
spline wavelets.

The detection algorithms make use of MPPs to measure the
cross-scale correlation of varicosities in the wavelet domain.
Considering the varying qualities of images, we have given the
user an option to select a threshold in our software. Such a
function is useful because it allows the user to conveniently
process images with different levels of noise.

Detailed analysis of the synaptic circuitry of a large system
in the cerebellum demands detailed knowledge on the spatial
distribution pattern of synapses, including axonal synapses of
parallel fibers. A key requirement is a high throughput analysis
protocol employing a reliable algorithm for the recognition of
synaptic varicosities from microscope image of parallel fibers.
The wavelet-based method described in this paper should, there-
fore, represent a significant step in future analysis of the synap-
tic circuitry. The brain is a complex and dynamic structure. In
that sense, the cerebellum is not different from any other sen-
sory, motor, or cognitive center of the brain, except that the
cerebellum is involved in all these functions [27]. In principle,
the methodology presented here should be generally applicable
to such analysis in many other important synaptic systems in
neuroscience research. This algorithm helps to reduce the time
required for the analysis and the potential errors involved in
quantifying the spatial distribution patterns of synapses.

APPENDIX

ANALYSIS OF PEAK PATTERNS IN THE DIFFERENTIAL

WAVELET DOMAIN

In the Appendix, we model the varicosities in the parallel fiber
as a mixture of Gaussian functions and analyze their behaviors
in the wavelet domain.

Suppose that the profile of varicosities along the parallel fiber
can be modeled as

f(x) = s(x) + n(x) (11)

where s(x) is the superimposition of a set of Gaussian functions
at different locations

s(x) =
N∑

i=1

ciGσi
(x, xi),

Gσi
(x, xi) =

1√
2πσi

exp
(
− x2

2σ2
i

)
(12)

and n(x) is the white noise, with cross correlation

E{n(x)n(x + τ)} = δ(τ). (13)

According to the central limit theorem, the B-splines of order
n should approximate the Gaussian function as the order n tends
to infinity (even for n = 3), i.e.,

βn(x) ≈
√

6
π(n + 1)

exp
(
− 6x2

n + 1

)
. (14)

They approximate a Gaussian function with the variance
(n + 1)/12. The wavelets defined in (1) are simply the first
and second derivatives of B-spline at scale j, which approx-
imate the first and second derivatives of Gσi

(x, 0). Thus, the
variance of the wavelets at scale j will be approximately
σ2

j = [(n + 1)/12]2j . When performing the wavelet transform
at scale j, we actually compute

Wjs(x) =
N∑

i=1

ciGσi
(x, xi) ∗ ψj(x)

=
N∑

i=1

ciGσi
(x, xi) ∗

dpβn(x)
dxp

(15)

≈
N∑

i=1

ci

dpGσ̃j
(x, xi)

dxp
, p = 1, 2 (16)

where we have used the fact that the convolution of two Gaussian
functions Gσi

(x, xi) ∗ Gσj
(x, 0) is still a Gaussian with a larger

variance σ̃j = σ2
i + [(n + 1)/12]2j . From this formula, we can

infer that the locations of the peaks correspond to the local
maxima of wavelet of first order or zero crossings of wavelets
of second order. This is the mathematical principle behind our
analysis algorithm.

For noise, if we take the wavelet transform of (2), it becomes

Ŵjn(ω) = n̂(ω)ψ̂(2jω) (17)

in the spectral domain.
It is easy to have

Ŵjn(ω)Ŵj+1n̂(ω) = n̂2(ω)ψ̂(2jω)ψ̂(2j+1ω). (18)

Because n(x) is a white noise, its power spectrum n̂2(ω) = c,
that is, a constant. If we take the inverse Fourier transform, the
above-mentioned formula becomes the cross correlation. Fol-
lowing the same procedure for analyzing the s(x), this cross
correlation of the wavelet transform of white noise can be ap-
proximated by

E{Wjn(x)Wj+1n(x + τ)} = c
dp

dxp
G2j+1(τ) (19)

when τ = 0; this cross correlation usually becomes zero. This
indicates that the cross correlation of the wavelet transforms of
noises at two scales is 0. In addition, we have shown that the
average number of zero crossings Dj will be decreased to half
of the previous one [21]

Dj ∼ 1
2j
√

n + 1
. (20)
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In other words, if we compute the MPP metrics, about half of
them are zeros because half of the zero-crossings or extremes
will disappear due to the smoothing operation.
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